How To Select The Right Touchscreen Technology?

Mar 3, 2022 | Articles



  1. What Is Touchscreen Technology?
  2. Multi-Touch Gestures
  3. Important things to consider when choosing a touchscreen technology
  4. What is the planned use of the device?
  5. Which touch features are required?
  6. How will the touchscreen be activated?
  7. What is the required environment to use touchscreen?
  8. What is the price point?
  9.  How many actuations does the touchscreen need to manage?
  10.  Final Words 

Touchscreens grow in popularity as a part of user interface systems and become a critical design decision. Each type of touchscreen, resistive or projected capacitive, offers many advantages. 

Do you want to know how to select the one that provides the optimal user experience from the wide variety of touchscreen options?

1. What Is Touchscreen Technology?

Traditional input devices for computer systems contain keyboards and mice. Touchscreen technology has become widely used to interact with computer systems and mobile devices.

A touchscreen is an electronic visual display that a user controls by touching the screen with fingers. A touchscreen allows more direct interaction with what is displayed than a mouse device. Touchscreens have become very common on smartphones, tablet computers, and other mobile devices. Additionally, standard laptops and desktop computers use touchscreen displays to use both touches and more traditional ways of input.

The first major successful technology was the resistive touchscreen, which uses a panel including two thin, electrically charged layers separated by a narrow space. These two layers touch by pressing the panel, and the location of the connection is recorded as the input. Resistive touchscreens are somewhat cheap and resistant to liquids, but they have relatively poor contrast, and you need to press them down with some pressure. Resistive touchscreens did not become widely used for computer systems but developed as part of other electronic systems. For instance, control panels in factories and the display screens used in restaurants to enter orders are resistive touchscreens.

The second major technology used in touchscreens is the capacitive touchscreen, which uses a layer of insulating material, such as glass, coated with a transparent conductor and touching the screen with your finger changes the screen’s electrostatic field. Several approaches can be used to record the location of the touch. Using a fine grid of capacitors is one of the most common ways to record the electrostatic field’s change. 


2. Multi-Touch Gestures

Touchscreen technology works similar to a computer mouse at a basic level. Instead of moving your pointer with a mouse, press the location with your finger. Multi-touch technology makes it possible to interact with the computer display in many ways. With touchscreen technology, tasks like scrolling up and down a web page, selecting text and drag-and-drop have become quite different. This figure shows several single and multi-touch gestures.


Things To Consider When Choosing A Touchscreen Technology

There are some important things you need to know while choosing a touchscreen, which are given below.

3. What Is The Intended Use Of The Device?

The first step is to precisely define what the device will be used for and which touchscreens are feasible. For instance,

Is the screen intended for an inexpensive toy where durability is not a huge concern?

Will your display be for a military application, subject to harsh conditions? 

Both situations require different durability, functionality, pricing, and input registration screen technologies. The next step is to figure out which functionalities are necessary once you have narrowed down the planned use for the display.


4. Which Touch Features Are Required?

You should know about users’ preferences; for example, will users only need to select single inputs with one finger on your device? 

If Yes, a standard 4-wire resistive touchscreen is perhaps a perfect option for them. A 4-wire resistive touchscreen’s simple construction handles this without adding much cost. However, if users need to zoom, scroll, or activate features with multiple touchpoints, that will narrow the selection to screens with multi-touch functionality, such as a projected capacitive or a resistive multi-touch screen.

5. How Will The Touchscreen Be Activated?

Given how touchscreens register inputs, activating the screen is an important consideration. 

Will the user wear gloves or another object to touch the screen? If so, specific types of touchscreens are necessary to register those inputs. While the sensitivity of a projected capacitive touchscreen can be adjusted to note certain styluses and gloves, the object used must be able to disrupt the capacitive field. A resistive touchscreen is optimal for applications where other input devices can register inputs from nearly any object.


6. What Is The Environment To Use Touchscreen?

Where the touchscreen will activate is another essential factor to consider.

Is it subject to drastic cleaning agents in a medical setting?

Will it be used in an industrial environment to repeat impacts? 

 PCAP technology is ideal if durability is a vital concern, given that damage to the cover glass does not change its ability to register inputs correctly. Resistive screens meet performance requirements for softer environments without adding additional cost.

7. What Is The Price Point?

Resistive touchscreens still tend to be cheaper, as PCAP touchscreens technology becomes more popular and its cost decreases. If you are looking for a touchscreen for a game, toy, or other cheap application, a simple 4-wire resistive touchscreen may add unnecessary cost to the device. However, a projected capacitive screen will be worth the additional cost in the case of a computer, smartphone, or other costly application that requires a high-end look.

8. How Many Actuations Does The Touchscreen Require To Handle?

Different touchscreen constructions are ranked for different numbers of actuations. A 4-wire or 8-wire resistive touchscreen will be optimal for a device that needs to remain accurate only for a few thousand actuations. In contrast, if the device will require significantly more usage, a 5-wire touchscreen is a better choice. However, a projected capacitive screen would be ideal if a display handles millions of actuations, as it can maintain its accuracy over infinite inputs.


9. Final Words

All the above questions are a great start, and this is far from a comprehensive list of variables to consider when deciding on the optimal touchscreen technology. Please schedule a consultation with our experts to discuss your project requirements and custom solutions.


Contact CreateXplay Now!

Get Suggestion and Quotation

[fluentform id="1"]